

Annual Drinking Water Quality Report

The Water We Drink

Clinton City 2023

We are pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality of the water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water sources have been determined to be from groundwater and surface water sources. Our water sources are a well and Weber Basin Water Conservancy District.

The Drinking Water Source Protection Plan for Clinton City is available for your review. It contains information about source protection zones, potential contamination sources and management strategies to protect our drinking water. Our sources are in remote and protected areas and have a low level of susceptibility to potential contamination sources. We have also developed management strategies to further protect our sources from contamination. Please contact us if you have questions or concerns about our source protection plan.

There are many connections to our water distribution system. When connections are properly installed and maintained, the concerns are very minimal. However, unapproved, and improper piping changes or connections can adversely affect not only the availability, but also the quality of the water. A cross connection may let polluted water or even chemicals mingle into the water supply system when not properly protected. This not only compromises the water quality but can also affect your health. So, what can you do? Do not make or allow improper connections at your homes. Even that unprotected garden hose lying in the puddle next to the driveway is a cross connection. The unprotected lawn sprinkler system after you have fertilized or sprayed is also a cross connection. When the cross connection is allowed to exist at your home, it will affect you and your family first. If you'd like to learn more about helping to protect the quality of our water, call us for further information about ways you can help.

If you have any questions about this report or concerning your water utility, please contact David Williams at 801-614-0870. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the second and fourth Tuesday of each month at that city office.

Clinton City routinely monitors for constituents in our drinking water in accordance with the Federal and Utah State laws. The following table shows the results of our monitoring for the period of January 1st to December 31st, 2023. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk.

In the following table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.

ND/Low - High - For water systems that have multiple sources of water, the Utah Division of Drinking Water has given water systems the option of listing the test results of the constituents in one table, instead of multiple tables. To accomplish this, the lowest and highest values detected in the multiple sources are recorded in the same space in the report table.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter (ug/l) - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Parts per trillion (ppt) or Nanograms per liter (nanograms/l) - one part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.

Parts per quadrillion (ppq) or Picograms per liter (picograms/l) - one part per quadrillion corresponds to one minute in 2,000,000,000 years or one penny in \$10,000,000,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Millirems per year (mrem/yr) - measure of radiation absorbed by the body.

Million Fibers per Liter (MFL) - million fibers per liter is a measure of the presence of asbestos fibers that are longer than 10 micrometers.

Nephelometric Turbidity Unit (NTU) - nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Treatment Technique (TT) - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

Maximum Contaminant Level (MCL) - The “Maximum Allowed” (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The “Goal”(MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Date- Because of required sampling time frames i.e. yearly, 3 years, 4 years and 6 years, sampling dates may seem outdated.

Waivers (W)- Because some chemicals are not used or stored in areas around drinking water sources, some water systems have been given waivers that exempt them from having to take certain chemical samples, these waivers are also tied to Drinking Water Source Protection Plans.

TEST RESULTS							
Contaminant	Violation Y/N	Level Detected ND/Low-High	Unit Measurement	MCLG	MCL	Date Sampled	Likely Source of Contamination
Microbiological Contaminants							
Total Coliform Bacteria	N	ND	N/A	0	Presence of coliform bacteria in 5% of monthly samples	2023	Naturally present in the environment
Fecal coliform and <i>E.coli</i>	N	ND	N/A	0	If a routine sample and repeat sample are total coliform positive, and one is also fecal coliform or <i>E. coli</i> positive	2023	Human and animal fecal waste
Turbidity for Ground Water	N	0.11	NTU	N/A	5	2020	Soil runoff
Turbidity for Surface Water	N	1	NTU	N/A	0.5 in at least 95% of the samples and must never exceed 5.0	2022	Soil Runoff (highest single measurement & the lowest monthly percentage of samples meeting the turbidity limits)
Inorganic Contaminants							
Antimony	N	1	ppb	6	6	2022	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic	N	ND-1	ppb	10	10	2020	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
Barium	N	77-108	ppb	2000	2000	2022	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Copper a. 90% results b. # of sites that exceed the AL	N	a. 714 b. 0	ppb	1300	AL=1300	2023	Corrosion of household plumbing systems; erosion of natural deposits
Cyanide	N	20	ppb	200	200	2018	Discharge from steel/metal factories; discharge from plastic and fertilizer factories

Fluoride	N	134	ppb	4000	4000	2022	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Lead a. 90% results b. # of sites that exceed the AL	N	a. 1 b. 0	ppb	15	AL=15	2023	Corrosion of household plumbing systems, erosion of natural deposits
Nitrate (as Nitrogen)	N	1	Ppm	10	10	2023	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Selenium	N	ND-1	ppb	50	50	2022	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Sodium	N	38-48	ppm	None set by EPA	None set by EPA	2022	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills.
Sulfate	N	38-44	ppm	1000	1000	2022	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills, runoff from cropland
TDS (Total Dissolved solids)	N	332-444	ppm	2000	2000	2022	Erosion of natural deposits
TOC (Total Organic Carbon)	N	2-5	ppm	None set by EPA	None set by EPA	2023	Naturally present in the environment

Disinfection By-products

TTHM [Total trihalomethanes]	N	1-40	ppb	0	80	2023	By-product of drinking water disinfection
Haloacetic Acids	N	ND-30	ppb	0	60	2023	By-product of drinking water disinfection

Radioactive Contaminants

Alpha emitters	N	1-3	pCi/1	0	15	2019	Erosion of natural deposits
Radium 228	N	ND-2	pCi/1	0	5	2019	Erosion of natural deposits

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Clinton City is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the safe Drinking Water Hotline or at <http://www.epa.gov/safewater/lead>.

All sources of drinking water are subject to potential contamination by constituents that are naturally occurring or manmade. Those constituents can be microbes, organic or inorganic chemicals, or radioactive materials. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of

contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care providers about drinking water. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

We at Clinton City work around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

Brandi Smith
CCR Compliance
Division of Drinking Water
P.O. Box 144830
Salt Lake City, Utah 84114-4830

Dear Ms. Smith:

Subject: Consumer Confidence Report for **Clinton City 06003**

Enclosed is a copy of **Clinton City** Consumer Confidence Report. It contains the water quality information for our water system for the calendar year 2023 or the most recent sample data.

We have delivered this report to our customers by:

- Posting the CCR on the Internet at this web address – clintoncity.com and we will also have hard copies at our public works office and city building.

Sincerely,
David Williams

Fertilizer Fact Sheet

What Are The Potential Hazards?

Fertilizer applied to plants during crop, lawn, and garden maintenance may leach into the ground water and cause contamination. The main constituent in fertilizer is usually nitrogen. If the nitrate level of drinking water is too high, infants, up to the age of six months, can develop a fatal disease called blue baby syndrome (methemoglobinemia). Drinking water that contains 10 milligrams of nitrate-nitrogen per liter of water exceeds the drinking water standard and should not be used, especially for infant formula. Proper storage, application, and watering procedures should be included in fertilizer best management practices to prevent contamination of ground water.

Storing Fertilizers

The less fertilizer you buy, the less you will have to store. Therefore, only purchase the amount and kind of fertilizer that you need.

- Fertilizer should be stored in locked, dry cabinets.
- Keep fertilizer and pesticides on separate shelves.
- Don't store fertilizers with combustibles, such as gasoline and kerosene. This creates an extreme explosion hazard.

Application Precautions

The chemical in fertilizer that can most easily pollute ground water is a form of nitrogen called nitrate. Nitrate moves readily in soil to the ground water strata. The best way to prevent the movement of nitrate into the ground water is to apply no more nitrogen than the crops, grass, garden plants, shrubs, or trees can use during the time that the plants are growing.

- Calibrate your spreader and sprayer to keep from applying too much fertilizer.
- Load fertilizer spreaders on the driveway or other hard surfaces so any spills can easily be swept up. Fertilizer that spills should be swept up and applied to the lawn or garden at the right time and amount. This allows the fertilizer to grow plants instead of washing off into the storm drain system and ultimately contaminating nearby streams and lakes.
- If you are using liquid fertilizer on your turf, add fertilizer to the spray tank while on the lawn. This way, if you spill the fertilizer, it will be used by the plants and not run off into the storm drain system.
- Do not spray or apply fertilizer near irrigation wells. Wells are conduits to the ground water.

Application Rates for Lawns

Utah State University's Extension Service recommends the following for Utah lawns: □It is important to fertilize on a regular basis every four to six weeks to maintain an attractive lawn. Begin when lawns start

to green in the spring, mid to late April. Earlier applications may cause a lawn to become greener faster, but may also increase spring disease problems. Summer applications of nitrogen fertilizer will not burn lawns, if you apply them to dry grass and water immediately. Fall applications are important for good winter cold tolerance, extended fall color, and fast spring green-up. A complete fertilizer containing nitrogen, phosphorus and potassium should be applied in the fall every three to four years. This will prepare the lawn for winter conditions and allow the phosphorus to penetrate into the root zone by the next growing season.

For a well-kept lawn in Utah, apply 1 pound of available nitrogen per 1,000 square feet each four to six weeks throughout the growing season.

Types of Plants

One of the best ways to protect your groundwater is to use plants that are drought-tolerant and that are adapted to your area. Drought-tolerant or low-water-use plants can continue to survive once they are established, even during times of little rainfall. Because you do not have to water these plants, there is less chance that nitrate and pesticides will be carried with the water through the soil and into the groundwater.

If low-water-use plants are not practical, then try to use medium water use plants. Water these plants only when they begin to show drought stress. Some plants will wilt when they are drought-stressed, while other plants will show marginal leaf burn.

Watering

Over-watering plants can cause excess water to move through the soil. This water can flush fertilizer away from the root zone of your plants and into the ground water. The best way to avoid over-watering is simply to measure how much you are adding. Contact your county Extension Service to determine the best way to calculate how much water your plants need and how to measure the amount you are applying.

For More Information, Contact:

Division of Drinking Water, Source Protection Program - (801) 536-4200

Household Hazardous Waste Fact Sheet

What is Household Hazardous Waste?

Many hazardous products and chemicals such as fuel, cleaners, oils and pesticides are used in and around the home every day. When improperly discarded, these products are called household hazardous waste (HHW). HHW are discarded materials and products that are ignitable, corrosive, reactive, toxic or otherwise listed as hazardous by the EPA. Products used and disposed of by a typical residence may contain more than 100 hazardous substances including:

- Batteries
- Cleaners
- Cosmetics
- Fluorescent light bulbs
- Glues
- Heating oil
- Insecticides and pesticides
- Ink
- Medicines
- Motor oil, fuel and automotive supplies
- Paints, thinners, stains and varnishes
- Polishes
- Swimming pool chemicals
- Smoke detectors
- Thermometers
- Fuel

HHW is a Serious Threat

The U.S. Environmental Protection Agency estimates the average American household generates 20 pounds of HHW each year. As much as 100 pounds of HHW can accumulate in the home and remain there until the resident moves or undertakes a thorough spring cleaning.

Since the chemicals found in HHW can cause soil and groundwater contamination, generate hazardous emissions at landfills and disrupt water treatment plants, it is important to dispose of HHW properly. Many solid waste treatment facilities are currently required to screen for HHW to avoid operating under restrictive hazardous waste laws. Furthermore, many communities may be required to establish a HHW collection program in order to qualify for permits to manage storm water.

Safe Handling Tips

The best way to handle household hazardous materials is to completely use the product before disposing of the container. If this is not possible, then the next alternative is to return unused portions to your community household hazardous waste clean-up day. Keep products in their original package with all labels intact. If the container is leaking, place it in a thick plastic bag. Pack the products in a plastic-lined cardboard box to prevent leaks and breakage.

Household hazardous waste clean-up days are for household wastes only. No industrial or commercial wastes and no containers larger than five gallons are accepted. Explosives, radioactive material and medical wastes are also unacceptable.

HHW can be dangerous to people and pets who come in contact with them. HHW can endanger water supplies, damage sewage treatment systems, and cause other environmental damage. Only use the products as directed. **DO NOT:**

- Flush HHWs down the toilet
- Pour HHWs down the sink
- Pour HHWs down a storm drain
- Pour HHWs on the ground

Contact your local health department or the Division of Solid and Hazardous Waste to determine whether your community has a household hazardous waste collection program.

Identify HHW

Reduce the amount of potentially hazardous products in your home and eliminate what you throw away by following these easy steps:

1. Before you buy:

- Read the labels and be aware of what they mean.
- Look for these words on labels; they tell you what products may need special handling or disposal.

Caution

Flammable

Combustible

Poison

Corrosive

Toxic

Danger

Volatile

Explosive

Warning

- Buy only what you can use entirely.
- Select a product best suited for the job.

2. After you buy:

- Read label precautions and follow directions for safe use.
- Recycle/dispose of empty containers properly. Clean up spilled products properly.
- Share what you can't use with friends or neighbors.
- Store properly.
- Use recommended amounts; more is not necessarily better.
- Use the child-resistant closures and keep them on tightly.

For More Information, Please Contact:

Division of Drinking Water, Source Protection Program - (801) 536-4200

Pesticides Fact Sheet

What Are The Potential Hazards?

Pesticides applied to plants during crop, lawn, and garden maintenance may leach into the ground water and cause contamination. Proper storage, mixing, application, spill cleanup, watering, and disposal procedures should be included in pesticide best management practices.

Storing Pesticides

The fewer pesticides you buy, the fewer you will have to store. Therefore, only purchase the amount and kind of pesticide that is needed. Pesticides should always be stored in sound, properly labeled, original containers. ***Sound containers are the first defense against spills and leaks.***

- Ensure that there are no holes, tears, or weak seams in the containers and that the label is readable.
- Pesticides should be stored in locked, dry cabinets.
- Be sure to store dry products above liquids to prevent wetting from spills.
- Storage and mixing areas should not be located near floor drains of any kind.
- Storage facilities should have secondary containment, such as a berm or dike, which will hold spills or leaks at:
 - 10% of the total volume of the containers, or
 - 110% of the volume of the largest container, whichever is larger.

Mixing Pesticides

- Mix pesticides on an impermeable surface, such as concrete, so any spills will be contained.
- Mix only the amount that you will use:
 - Measure the total square feet you intend to treat.
 - Read the label on the pesticide container and follow the instructions. (These are often given in terms of amount of pesticide to use per thousand square feet.)
 - By properly measuring and calculating, there should be little or no pesticide left in the spray tank when the job is finished and it will be applied at the recommended rate.

Applying Pesticides

Pesticides are used to kill or control weeds (herbicides), insects (insecticides) and fungi (fungicides) that attack plants. Some of these pesticides can move through the soil and into the ground water. Guidelines for the safe use of pesticides are listed below:

- Be willing to accept a low level of weed, insect, and plant disease infestation.
- Use pesticides only when absolutely necessary.
- Identify pests correctly. Use the proper pesticides.
- Read and follow the directions printed on the container labels. Remember, the label is the law.

- Calibrate your spreader and sprayer to keep from applying too much pesticide.
- Do not spray or apply pesticides near irrigation wells. Wells are conduits to the ground water.
- Do not spray or apply pesticides near your walks and driveway. This prevents them from washing off into the storm drain system.

Cleaning Up Spills

- Dry formulated pesticide spills should be swept up and applied to crops, lawns, and gardens at the rate specified on the label.
- Liquid pesticide spills should be soaked up using absorbent material (such as, soil, sawdust, and cat litter). The contaminated absorbent material should then be put in a sealed container and taken to a household hazardous waste collection site.

Watering

Over-watering your plants can cause excess water to move through the soil. This water can carry pesticides that can contaminate the ground water. The best way to avoid over-watering is simply to measure how much you are adding. Contact your county Extension Service to determine the best way to calculate how much water your plants need and how to measure the amount you are applying.

Disposing of Pesticides

If the pesticide was properly measured and mixed, there should be little or no spray left in the tank. The little that may be left can be safely sprayed over the area that was treated until it is gone. Disposal of empty pesticide containers and unused pesticides should be handled as follows:

- If you are using liquid pesticides, rinse the container three times. Be sure to pour the rinsing into your sprayer and not down a drain or onto the ground. Containers, which have been emptied and rinsed, can be discarded in the trash.
- Unused pesticides in their original containers can be recycled at household hazardous waste collection sites.

For More Information, Please Contact:

Division of Drinking Water, Source Protection Program - (801) 536-4200